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High-rate material modelling and validation
using the Taylor cylinder impact test

By P. J. Maudlin, G. T. Gray III, C. M. Cady and G. C. Kaschner

PO Box 1663, Los Alamos National Laboratory,
Los Alamos, NM 87545, USA

Taylor cylinder impact testing is used to validate anisotropic elastoplastic constitu-
tive modelling by comparing polycrystal-computed yield-surface shapes (topography)
with measured shapes from post-test Taylor specimens and quasi-static compression
specimens. Measured yield-surface shapes are extracted from the experimental post-
test geometries using classical r-value definitions modified for arbitrary stress state
and specimen orientation. Rolled tantalum (body-centred-cubic metal) plate and
clock-rolled zirconium (hexagonal-close-packed metal) plate are both investigated.
The results indicate that an assumption of topography invariance with respect to
strain rate is well justified for tantalum. However, a strong sensitivity of topography
with respect to strain rate for zirconium was observed, implying that some accounting
for a deformation mechanism rate dependence associated with lower-symmetry mate-
rials should be included in the constitutive modelling. Discussion of the importance
of this rate dependence and texture evolution in formulating constitutive models
appropriate for finite-element model applications is provided.

Keywords: anisotropic plasticity; polycrystal plasticity; Taylor anvil tests;
tantalum deformation; zirconium deformation; rate-dependent plasticity

1. Introduction

The importance of an accurate constitutive description for large deformation involv-
ing anisotropic metallic materials has been demonstrated in many applications; the
earring of deep-drawn cups is a classic low-strain-rate example. Our interest is to
develop more accurate descriptions of material strength for high-rate forming appli-
cations, and to integrate such descriptions into the appropriate continuum mechanics
codes. Over the last decade, the computing power (i.e. memory, processor speed and
number of processors) available for numerical analysis has increased substantially.
As a result, the computational tools available for simulating high deformation pro-
cesses have recently improved to accommodate more complex descriptions of mate-
rial behaviour. However, even with state-of-the-art computing power, there is still a
need to be aware of the cost of using advanced material modelling in the codes and
balancing this cost with the realized accuracy improvement in predictive capability.

Our Hookean modelling combines an appropriate elastic stiffness, a physically
based flow stress model describing rate and thermally dependent hardening, and a
yield-surface representation, again physically based on experimental measurements
of the crystallographic texture and polycrystal simulations. This elastoplastic prop-
erty information is used in classical associative flow constitutive formulations using
unrotated (material frame) tensors, with emphasis on cubic and hexagonal materials.
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1708 P. J. Maudlin and others

This approach bridges the gap between single crystal and application length-scales
with continuum constructs in order to address high-rate deformation processes with
more physical fidelity.

Taylor cylinder impact testing (Taylor 1948; Lee & Tupper 1954; Hawkyard 1969;
Wilson et al . 1989; Maudlin et al . 1997, 1999) has been used to validate consti-
tutive modelling in the presence of gradients of stress, strain and strain rate that
this integrated test affords. For example, an investigation of plastic wave propaga-
tion in a Taylor test comparing time-resolved experimental data using high-speed
photography with two-dimensional dynamic simulations is given by Maudlin et al .
(1997). The work of Maudlin et al . (1999) presents a static comparison of calculated
three-dimensional final shapes with measured shapes of post-test specimens for an
orthotropic material. In this effort, r-values (straining ratios) are extracted from
quasi-static compression data and high-rate Taylor impact specimens, and compared
to polycrystal simulations using yield-surface shape as the basis for comparison.
Using this approach, inferences can be made as to the evolution and rate depen-
dence of yield-surface shape (topography) for a given material. Results from such
comparisons are presented here. Examples and counter-examples of the importance
of yield-surface topography and the effect of texture evolution on topography are
discussed.

2. Theory

Constitutive modelling appropriate for anisotropic elastic-plastic flow of metal is
first reviewed, followed by an extension of the classic definition of r-value (Hill 1950)
to accommodate arbitrary stress state and material orientation. The relationship
between r-value and yield-surface shape is then developed as a basis for comparison
with experimental data.

(a) Elastoplastic constitutive modelling

We begin with a continuum level constitutive description that uses the rate form
of Hooke’s law, i.e. hypoelasticity, which is a very good approximation for metals
that exhibit small elastic strains:

σ̇ = E : De. (2.1)

This relationship assumes the unrotated Cauchy stress σ as a stress measure, and
the unrotated rate-of-deformation tensor D (symmetric part of the velocity gradient
tensor) as an appropriate work conjugate rate-of-strain measure. Tensor order is
denoted here by the number of underbars. The quantity De is the elastic part of D
that follows from a partition assumption for the elastic and plastic rates of strain,
i.e.

D = De +Dp. (2.2)

Deviatoric versions of equations (2.1) and (2.2), which are more convenient for incom-
pressible materials, can be derived as:

ṡ = ξ : de (2.3)
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High-rate material modelling and validation 1709

and

d = de + dp, (2.4)

where
ξ

is the deviator of the fourth-order elastic stiffness tensor

E.

Next, consider the classical associated flow rule for evolving the plastic rate-of-
strain dp:

dp = λ̇
∂f

∂s
, (2.5)

where the quantity λ̇ is a time-dependent scalar, and the quantity f is a contin-
uous yield function known from either polycrystal predictions (Maudlin & Schiferl
1996; Maudlin et al . 1996) or experimental interrogation (Hill 1950). This func-
tion f is five dimensional in terms of independent deviatoric stress components
(s11, s22, s23, s31, s12), and physically constrains the magnitude of s during plastic
flow. Its stress gradient determines the direction of the plastic rate-of-strain tensor
dp, as indicated in equation (2.5). A general quadratic form for f can be written as

f ≡ 1
2s : α : s− σ2 = 0, (2.6)

where
α

is a fourth-order major and minor symmetric shape tensor, and σ is a flow stress
scalar assumed to be a function of strain, strain rate and temperature invariants.

The flow stress σ model of choice for our dynamic applications (see Maudlin et al .
1995, 1997, 1999) is the so-called mechanical threshold stress (MTS) model (Follans-
bee & Kocks 1988). Briefly, the model represents a superposition of contributions to
the flow stress where each contribution is a mobile dislocation interaction with some
barrier:

σ = σa +
µ

µ0

∑
i

sth,iσ̂i. (2.7)

The product under the summation sign in equation (2.7) contains the internal vari-
able σ̂, called the mechanical threshold stress (related to the forest dislocation den-
sity), which is multiplied by a thermal activation function sth. The athermal stress σa
represents dislocation interactions with long-range barriers such as grain boundaries,
and is typically assumed to be constant although it is formally dependent on grain
size.

The most important evolution equation for σ̂ is a differential hardening law for
the build-up of forest dislocations:

∂σ̂

∂εp = Θ0

[
1− F

(
σ̂

σ̂s

)]
. (2.8)
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1710 P. J. Maudlin and others

In this equation, Θ0 represents hardening due to dislocation generation, and the
product Θ0 · F represents softening due to recovery. The threshold stress at zero
strain hardening σ̂s is called the saturation threshold stress. Relationships for F ,
Θ, σ̂s are, typically, material specific, and formally depend on temperature T and
plastic strain rate ε̇p. The choice of σ̂/σ̂s for the function F gives a Voce form for
the hardening law of equation (2.8).

For thermal-activation controlled deformation, the function sth in equation (2.7)
has an Arrhenius form:

sth,i =
[
1−

(
kT ln(ε̇0i/ε̇

p)
µb3g0i

)1/qi ]1/pi

, (2.9)

where the exponents p and q are material constants, ε̇0 is a reference strain rate,
µ is a temperature-dependent shear modulus, k is Boltzmann’s constant, b is the
magnitude of Burger’s vector and g0 is a normalized activation energy for a given
dislocation/obstacle interaction. The reader is referred to Follansbee & Kocks (1988)
and Chen & Gray (1996) for more detail concerning the development and interpre-
tation of equations (2.7)–(2.9).

Returning now to the yield function given by equation (2.6), note that for ortho-
tropic materials (mirror plane symmetry where the deviator tensor

α

has six independent constants), equation (2.6) simplifies to the quadratic function
(Hill 1950),

f ≡ 1
2 [(G+H)s2

11 + (F +H)s2
22 + (F +G)s2

33 − 2Hs11s22 − 2Gs11s33

− 2Fs22s33 + 2Ls2
23 + 2Ms2

31 + 2Ns2
12]− σ2 = 0, (2.10)

and the shape tensor
α,

written in Voigt–Mandel components, can be expressed in terms of the Hill coeffi-
cients of equation (2.10):

VM(α)Hill48 =


G+H −H −G 0 0 0
−H F +H −F 0 0 0
−G −F F +G 0 0 0
0 0 0 L 0 0
0 0 0 0 M 0
0 0 0 0 0 N

 . (2.11)

A von Mises yield function can be recovered from equation (2.6) using the following
second-order tensor for α:

VM(α)von Mises =


2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0

0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3

 . (2.12)
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High-rate material modelling and validation 1711

To achieve a final constitutive relationship in rate form (useful for explicit con-
tinuum code computations), we substitute equations (2.4), (2.5) and (2.6) back into
equation (2.3), giving the unrotated stress rate applied numerically in other efforts
(see Maudlin et al . 1995, 1999):

ṡ = ξ : (d− λ̇α : s). (2.13)

(b) Classical and generalized r-values

Following the classic work of Hill (1950), we define an r-value (r) as a ratio of
orthogonal plastic strain rates realized in a metal specimen of rectangular cross-
section loaded in a state of uniaxial stress (tension or compression). These straining
rates are logically in directions perpendicular to the direction of loading and the free
surfaces. For example, if ‘1’ is the direction of uniaxial loading, it follows from the
boundary conditions that s11 = −2s22 = −2s33 = 2

3σ in the laboratory test frame,
and the corresponding instantaneous r-value definition is

r1 ≡
e2 · dp · e2

e3 · dp · e3
. (2.14 a)

Here, the ei are Cartesian base vectors for the laboratory reference frame, and the r-
value subscript designates the loading direction. Similar r-value definitions for loading
in the other two directions, i.e. 2 and 3, respectively, follow as

r2 ≡
e1 · dp · e1

e3 · dp · e3
and r3 ≡

e1 · dp · e1

e2 · dp · e2
. (2.14 b)

The definition of r-value can be generalized into matrix form:

r ≡
 1 r12 r13
r21 1 r23
r31 r32 1

 , where rIJ =
eI · dp{QT · s ·Q} · eI
eJ · dp{QT · s ·Q} · eJ

, no sum I, J,

(2.15)

where the tensor, Q, is a proper orthogonal rotation that properly aligns the direction
of loading for each value of rIJ :

Q = εIJKQ
K
, where Q

1
= I, Q

2
= −

0 −1 0
1 0 0
0 0 1

 , Q
3

=

0 0 −1
0 1 0
1 0 0

 .

(2.16)

Here, εIJK is the third-order alternator tensor and, for clarity, the functional depen-
dence of the rate-of-straining tensor dp on the rotation Q is shown explicitly in
equation (2.15). Also note that the matrix definition of r-value contains only three
independent coefficients: r12, r13, r23; the relationship rIJ = −1/rJI holds between
transposed components, and, obviously, rII = 1 (no sum on I) from inspection of
equation (2.15).

Next, we substitute the associated flow rule given by equation (2.5) into equa-
tion (2.15), obtaining an r-value involving only yield-surface stress gradients ∂f/∂s
after cancellation of λ̇. Recalling from equation (2.13) the form of ∂f/∂s for a
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quadratic yield function, and incorporating Q to impose the direction of loading,
gives

∂f

∂s
= α : (QT · s ·Q), or in indicial notation

∂f

∂sij
= αijklQ

T
kmsmnQnl, (2.17)

and, after substitution of equation (2.17) back into equation (2.15), we obtain the
final r-value result:

rIJ =
eI · α : (QT · s ·Q) · eI
eJ · α : (QT · s ·Q) · eJ

or rIJ =
αIIklQ

T
kmsmnQnl

αJJpqQT
prsrsQsq

, no sum I, J. (2.18)

As an example, consider the case of uniaxial stress in the e1-direction (Q
K=1

),
where the stress deviator simplifies to

s = s11

1 0 0
0 −1

2 0
0 0 −1

2

 , (2.19)

and the yield gradient given by equation (2.17) becomes
∂f

∂sij
= s11[αij11 − 1

2αij22 − 1
2αij33]. (2.20)

Evaluation of the r-value (specifically r23) follows from equation (2.18) as just a ratio
of the normal shape coefficients:

r23 = α1122/α1133. (2.21)

In like manner, uniaxial stress loading in the

e2 (Q
K=2

) and e3 (Q
K=3

)

directions results in similar expressions for the other orthogonal rIJ , and, thus, we
obtain for the r-value matrix

r =


1

α1133

α2233

α1122

α2233

−α2233

α1133
1

α1122

α1133

−α2233

α1122
−α1133

α1122
1

 . (2.22)

Expressions for the normal shape coefficients (and hence the rIJ) as functions
of the deviator stress are next derived by solving a system of six equations for the
six unknowns αijklδklδij , where δij is the Kronecker delta function. Three equations
are consecutively generated by substituting the condition of uniaxial stress (e.g.
equation (2.19)) into the yield function equation (2.6) for each of the three Cartesian
directions ei. Three additional equations are available given that

α

is a deviator tensor and the six coefficients αijklδklδij are dependent, i.e. each row
(or column) of the upper 3× 3 sub-matrix of

VM(α)
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sums to zero:

α11ii = 0, (2.23 a)
α22ii = 0, (2.23 b)
α33ii = 0. (2.23 c)

Solving this 6× 6 system of equations for αijklδklδij produces the solution:

α1111 =
8σ2

9s2
11
, (2.24 a)

α2222 =
8σ2

9s2
22
, (2.24 b)

α3333 =
8σ2

9s2
33
, (2.24 c)

α2233 = 4
9σ

2
(

1
s2

11
− 1
s2

33
− 1
s2

22

)
, (2.24 d)

α1133 = 4
9σ

2
(

1
s2

22
− 1
s2

11
− 1
s2

33

)
, (2.24 e)

α1122 = 4
9σ

2
(

1
s2

33
− 1
s2

11
− 1
s2

22

)
. (2.24 f)

The deviatoric stress components (s11, s22, s33) in equations (2.24) are uniaxial values
as measured in three independent orthogonal tests. These relationships assume that
the flow stress σ is a known function characterized from uniaxial stress data in a
specific ei direction.

Recalling the relationship between the components of

α

and F , G and H as given by equation (2.11), a similar set of equations for F , G and
H as a function of deviatoric stress can be obtained by inspection of equations (2.24):

F = 4
9σ

2
(

1
s2

22
+

1
s2

33
− 1
s2

11

)
, (2.25 a)

G = 4
9σ

2
(

1
s2

33
+

1
s2

11
− 1
s2

22

)
, (2.25 b)

H = 4
9σ

2
(

1
s2

11
+

1
s2

22
− 1
s2

33

)
. (2.25 c)

The above formulations assume that the material reference frame (where f is char-
acterized) and the laboratory test frame are coincident. However, if the two frames
differ by some three-dimensional rigid body rotation, then the derivation for the r-
values is somewhat more complicated. Physically, this situation would arise when
the material frame (which is usually based on the microstructural symmetry of the
material) differs in orientation from the laboratory test frame, where some geometri-
cal specimen is loaded. An example of this situation is given below. For clarity in the
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1714 P. J. Maudlin and others

subsequent discussion, we associate the Cartesian base vectors ēi with the material
frame and, as used above, the Cartesian base vectors ei with the laboratory frame.

In order to derive a more general r-value definition, recall that the yield function f
as given by equation (2.6) is a function of deviatoric stress, as observed with respect to
the material frame. It therefore depends on the unrotated stress state s̄ (the overbar
designates unrotated material frame tensors). This unrotated stress differs from the
laboratory stress s by a rigid body rotation represented by the proper orthogonal
tensor R (ei = R · ēi):

s̄ = RT · s ·R, or in indicial notation s̄ij = RT
iksklRlj . (2.26)

Noting the r-value relationship given by equation (2.15), the stress gradient given
by equation (2.5) is expanded using the chain rule such that

∂f

∂s
=
∂f

∂s̄
:
∂s̄

∂s
or

∂f

∂sij
=

∂f

∂s̄kl

∂s̄kl
∂sij

, (2.27)

and the stress derivative ∂s̄/∂s follows from equation (2.26) as

∂s̄

∂s
= RT · ∂s

∂s
·R = RT · δ ·R

or
∂s̄kl
∂sij

= RT
km

∂smn
∂sij

Rnl = RT
kmδmiδjnRnl = RT

kiRjl. (2.28)

The tensor
δ

is the fourth-order identity tensor (δijkl = δikδjl). Substitution of equations (2.5),
(2.27) and (2.28) into the r-value expression given by equation (2.15) results in the
relationship

rIJ =
eI ·

{
∂f

∂s̄
: (RT · δ ·R)

}
· eI

eJ ·
{
∂f

∂s̄
: (RT · δ ·R)

}
· eJ

or rIJ =

∂f

∂s̄kl
RT
kIRIl

∂f

∂s̄rs
RT
rJRJs

, no sum I, J.

(2.29)
In this general form, the r-value can accommodate an arbitrary (but continuous) yield
function. If the quadratic form of equation (2.6) is assumed for f , then equation (2.29)
specifies to

rIJ =
eI · {[α : s̄] : [RT · δ ·R]} · eI
eJ · {[α : s̄] : [RT · δ ·R]} · eJ

, no sum I, J, (2.30 a)

or

rIJ =
αijkls̄klRIj
αrsuv s̄uvRJs

, no sum I, J. (2.30 b)

If the unrotated stress is replaced with the laboratory stress via equation (2.26), we
obtain the more useful, albeit more complicated, laboratory form

rIJ =
eI · {[α : (RT ·QT · s ·Q ·R)] : [RT · δ ·R]} · eI
eJ · {[α : (RT ·QT · s ·Q ·R)] : [RT · δ ·R]} · eJ

, no sum I, J, (2.31 a)
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or

rIJ =
αijklR

T
kmQ

T
mpspqQqnRnlR

T
iIRIj

αrsuvRT
uwQ

T
wysyzQzxRxvR

T
rJRJs

, no sum I, J. (2.31 b)

Equations (2.31) represent general r-value expressions for an arbitrary stress state
and for an arbitrary orientation difference between the material and laboratory refer-
ence frames. Therefore, stress states other than uniaxial stress can be accommodated,
and r still retains its basic definition as a ratio of normal straining rates realized in
two orthogonal directions. Note that for an arbitrary orientation difference between
the material and laboratory frames, R assumes the three-dimensional form

R =

cosφ − sinφ 0
sinφ cosφ 0

0 0 1

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 . (2.32)

Here, the Euler angles ψ, θ, φ represent right-hand-rule plane rotations, as per the
convention described by Noble (1969).

As an example of equations (2.31), assume plane rotation around the 3-axis such
that R becomes

R =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 , (2.33)

and the laboratory observed stress is again uniaxial in the 1-direction as given by
equation (2.16), i.e.

Q = I.

Expanding the summations of equation (2.31 b), substituting in equations (2.16) and
(2.33), and noting the deviator relationships given by equations (2.20) gives

r23 =
α1122 + (α1111 + α2222 − 2α1122 − 4α1212) sin2 ψ cos2 ψ

α2233 sin2 ψ + α1133 cos2 ψ
. (2.34)

Replacing the tensor components αijkl in equation (2.34) with Hill coefficients from
equation (2.8) gives the classic result (Hill 1950) for an r-value specimen cut from
sheet metal at an arbitrary orientation ψ with respect to the rolling direction:

r23 =
H + (2N − F −G− 4H) sin2 ψ cos2 ψ

F sin2 ψ +G cos2 ψ
. (2.35)

3. Low-rate yield-surface comparisons

Experimental data-sets are presented for both tantalum and zirconium metals: stress–
strain loading curves were measured for compression specimens subjected to a state
of uniaxial stress. This information is converted into yield-surface shape coefficients
that are subsequently compared to polycrystal simulation results.

(a) Tantalum

Consider a plate of unidirectional rolled body-centred-cubic (BCC) tantalum, from
which compression specimen ‘blocks’ (nominally 5 mm cubes) are cut (as depicted in
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Figure 1. Hexahedral compression test specimen cut from a unidirectional rolled
plate of tantalum.

figure 1). These blocks have an associated material coordinate system (basis ēi) as
shown in figure 1, where ē1 is transverse to the rolling direction, ē2 corresponds to
the rolling direction and ē3 is through-thickness (TT). The manufacturing process
for this plate produced a near-orthotropic mild rolling texture, discussed in some
detail by Maudlin et al . (1998) and Bingert et al . (1997).

A set of stress points mapping out a π-plane yield envelope can be generated by
repetitive plastic straining probes (polycrystal calculations) of an orientation distri-
bution function (Maudlin et al . 1996). For each arbitrary straining direction, a yield
stress point is computed via a Bishop–Hill polycrystal calculation using the upper
bound option of the LApp (Los Alamos polycrystal plasticity) code (Kocks 1970;
Canova et al . 1985) with the slip deformation modes {110}〈111〉 and {112}〈111〉.
Such a π-plane yield surface is presented in figure 2, showing a LApp-simulated yield
surface, and also a quadratic fit to this LApp piece-wise function; this quadratic
function interpolates the LApp results at the horizontal and vertical axis intercepts.
The shape coefficients associated with the quadratic fit are given in row 1 of table 1
along with the associated rIJ that are easily computed using equation (2.22).

The blocks of figure 1 were compressed quasi-statically at room temperature in
a state of uniaxial stress along each material axis ēi producing the loading curves
presented in figure 3. These curves show that the TT ē3 direction produces the
hardest response, with the other in-plane (IP) directions producing ca. 20% softer
but similar responses. The apparent discontinuities at 4% and 8% strains in these
curves represent unload/relubrication/reload steps in the compression testing for the
purpose of minimizing surface friction.

Conversion of the uniaxial stress–strain data of figure 3 into αijklδklδij (i.e. α1122,
α1133, α2233) using equations (2.24) gives the results presented in figure 4. These
curves quantify material anisotropy in terms of yield-surface shape coefficients shown
as a function of log strain. As confirmed by figure 4, after only 12% strain one would
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Figure 2. A two-dimensional π-plane subspace showing a polycrystal-generated piece-wise yield
surface (line segments and points) being compared with a quadratic fit (solid curve) interpolating
the piece-wise function at the horizontal and vertical axis intercepts.

not expect significant texture evolution and, thus, the αijklδklδij remain relatively
constant. Values for the αijklδklδij at 12% strain are given in row 2 of table 1, along
with the corresponding r-values as computed using equation (2.22).

(b) Zirconium

Uniaxial compression testing was conducted on a high-purity crystal-bar zirconium
plate, as discussed in detail by Kaschner et al . (1998). This hexagonal close-packed
metal plate had been clock rolled at room temperature and then annealed at 823 K
for 1 h, producing an equiaxed grain structure with a strong in-plane isotropic basal
texture (Kaschner et al . 1998; Maudlin et al . 1998). Next, we associate a material
reference frame (basis ēi) with the Zr plate, where the ē1×ē2 plane corresponds to the
original rolling plane, and the ē3 direction is TT. Right-circular-cylinder compression
samples (nominally 5 mm in diameter by 5 mm in height) were cut from the plate in
all three ēi orientations, i.e. TT (ē3) and IP (ē1 or ē2) specimens. The IP specimens
were actually machined at 0◦, 45◦ and 90◦ relative to the ē1 axis.

Mechanical tests were performed in compression at 76 and 298 K, and at quasi-
static strain rates of 0.001 and 0.1 s−1 using an Instron screw-drive load frame
(Kaschner et al . 1998). Figure 5 presents photographs of final geometries for these
tests featuring TT and IP (ē2) specimens strained to values of 22% and 30% equiv-
alent plastic strain, respectively.
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Figure 3. Uniaxial stress–strain curves for a unidirectional rolled Ta plate compressed along
each of the material axes ēi.

Figure 4. Quadratic shape coefficients evolving as a function of log strain. These coefficients
were evaluated using equations (2.24) and the loading curves of figure 3.

A π-plane yield envelope for this Zr material was generated by repetitive plastic
straining probes of the texture orientation distribution function given in Maudlin
et al . (1998). For each arbitrary straining direction, a yield stress point was com-
puted via a self-consistent polycrystal simulation using the code VPSC (Lebensohn
& Tomé 1993). Sign-independent prismatic and pyramidal slip deformation modes
were assumed in these simulations. The resulting π-plane yield surface is presented
in figure 6 presenting a VPSC simulation of a 10% strained shape-hardened yield
surface; additional detail is provided in Maudlin et al . (1998).

Also shown in figure 6 is a quadratic fit to the polycrystal results, again inter-
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Figure 5. Photographs of the final compression shapes for quasi-static room-temperature uni-
axial stress tests for zirconium specimens machined (a) through-thickness (ē1 × ē2 plane) and
(b) in-plane (ē2 × ē3 plane).

Table 1. Tantalum r-values and shape coefficients

experiment or simulation r23 r13 r12 −α1122 −α1133 −α2233

polycrystal simulations (LApp) 1.25 1.52 1.22 1.37 1.10 0.90
low-rate compression 1.32 1.46 1.10 1.39 1.05 0.95
Taylor cylinder impact (175 m s−1) 1.25 1.25 1.00 1.25 1.00 1.00

polating the VPSC piece-wise curve at the horizontal and vertical axis intercepts.
This quadratic function misses the stress corners in the VPSC shape, but could be
‘accurate enough’ depending on the finite-element (FE) application intended for this
information. FE simulation of the compression depicted in figure 5 requires the use
of the piece-wise yield surface to accurately predict the final compression geometries,
as discussed in Maudlin et al . (1998). A superquadric yield, where the stress com-
ponents are raised to fractional powers, would better fit the corners apparent in the
figure 6 results function (Schiferl & Maudlin 1991). The shape coefficients associated
with the quadratic fit are given in row 1 of table 2 along with the corresponding rIJ .

Loading curves for the TT and IP samples are presented in figure 7. The IP
compressions produced very similar stress–strain curves along the two IP directions
ē1 and ē2, with small variations in stress of ca.±10 MPa about the mean value for
a given set of conditions. This finding supports the expectation of in-plane isotropy
for this clock rolled material.

As performed for the tantalum, we converted the uniaxial stress–strain data of fig-
ure 7 into αijklδklδij using equations (2.24), giving the shape coefficients presented in
figure 8. These coefficient curves quantify the very strong plastic anisotropy apparent
for this material, and also indicate strong evolution as a function of strain. Specif-
ically, the TT coefficient α1122 has a value of 15 (recall that unity corresponds to
isotropy) at 10% strain decreasing to about 8 at 22% strain. The other IP coefficients,
α1133 and α2233, also evolve from their initially rather large values, and symmetri-
cally approach unity at large strain. Values for α1122, α1133, α2233 at 22% strain are
given in row 2 of table 2 for these quasi-static compression tests, along with the
corresponding r-values, as computed using equations (2.22).
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Figure 6. A two-dimensional π-plane subspace showing a piece-wise yield surface (line segments
and points) being compared with a quadratic fit (solid curve) interpolating the piece-wise func-
tion at the horizontal and vertical axis intercepts.

Table 2. Zirconium r-values and shape coefficients

experiment or simulation r23 r13 r12 −α1122 −α1133 −α2233

polycrystal simulations (VPSC) 7.30 7.30 1.00 7.30 1.00 1.00
low-rate compression 11.16 7.03 0.63 8.65 0.78 1.22
Taylor cylinder impact (243 m s−1) 1.42 1.42 1.00 1.42 1.00 1.00

4. High-rate yield-surface comparisons

Taylor test profile data-sets are presented for both tantalum and zirconium metals.
Three-dimensional post-impact specimen shapes were digitized in order to estimate
the axial distribution of strain. This information is converted into r-values and yield-
surface shape coefficients, and is compared with polycrystal simulations.

(a) Tantalum

Taylor cylinder impact specimens were cut from the same tantalum plate discussed
above for the compression blocks. Two IP cylinder orientations (i.e. the cylindri-
cal axes are coincident with either the ē1 (transverse) or the ē2 (rolling) material
directions) were produced. The Taylor specimens were calibre 30 (7.62 mm diame-
ter) cylinders with a length of 38.1 mm (1.5 in) having the length-to-diameter ratio
L/D = 5.
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Figure 7. Uniaxial tress–strain curves for a crystal bar clock-rolled Zr material quasi-statically
compressed along each of the material axes ēi.

Figure 8. Quadratic shape coefficients evolving as a function of strain. These coefficients were
evaluated using equations (2.24) and the loading curves of figure 7.

Taylor tests were conducted at Eglin Air Force Base as described in Maudlin et
al . (1999), producing three consistent post-test geometries (designated sc-11, sc-12
and sc-21 in Maudlin et al . (1999)), all having the general appearance portrayed
in figure 9. The cylinders were launched using a calibre 30 Mann powder gun. The
velocity of the projectiles was measured using both pressure transducers and parallel
laser beams crossing the flight path. Velocities determined from the two systems were
ca. 175 m s−1, agreeing to within ±3.0 m s−1. The anvil target was AF1410 steel, heat
treated to a surface hardness of Rc 58.
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Figure 9. Photographs of the post-test geometry for a tantalum Taylor impact specimen.

After testing, geometric profile data for the deformed specimens were generated
using an optical comparator. As discussed in Maudlin et al . (1999), the data-set
consists of three digitized side profiles for the minor dimension, three digitized side
profiles for the major dimension, and three digitized footprints (the cross-sectional
area at the impact interface, i.e. the ē1 × ē3 or ē2 × ē3 plane). All three tests indi-
cated good comparability in terms of the post-test shapes. The digitized footprints,
in particular, are nearly identical in shape. Eccentricities (ratio of major to minor
diameters) of the footprints range from 1.18 to 1.23 (say an average value of 1.20).
Time-integrated r-values are extracted from these footprint geometries using a form
similar to equations (2.14) that assumes homogeneous deformation

rIJ ∼=
∫ ∞

0
dp
II dt

/∫ ∞
0

dp
JJ dt =

ln(RI/R0)
ln(RJ/R0)

, no sum I, J, (4.1)

where R is the specimen radius. Applying equation (4.1) to the Taylor footprint
data gives the r-value estimates in row 3 of table 1, along with the inferred shape
coefficients. These coefficients were obtained by solving equation (2.24) for the α1122,
α1133, α2233, and noting that the resulting set of three linear equations is homoge-
neous and, thus, does not represent a system of three independent equations; an
extra equation is needed to obtain a non-trivial unique solution. This is a conse-
quence of the fact that the yield function given by equation (2.6) has an implied
normalization. Assuming that the flow stress σ had been characterized from uniaxial
stress data in a specific direction, say in the ēI direction, then the normalization
relationship −α11II −α22II = 2 must hold in order to recover a uniaxial stress state
from the yield function. This normalization in conjunction with equation (2.24) will
produce a unique set of αijklδklδij .

The use of equation (2.24) to compute αijklδklδij from Taylor test r-values assumes
that a state of uniaxial stress existed in the specimen during deformation. Based on
the FE simulations reported in Jones et al . (1992), this is actually a good assumption.
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Figure 10. Tantalum Taylor cylinder strain profiles shown as a function of axial position relative
to the impact interface. Both major- and minor-side profiles are featured for the various Taylor
shots.

Specimen r-values extracted from arbitrary test geometries that do not realize uni-
axial stress during deformation require the use of an inverted form of equation (2.31)
to compute αijklδklδij .

Further analysis of the digitized side profiles for these Taylor shots is useful to
better understand plastic anisotropy and evolution. Axial strain profiles for both the
major and minor sides of the deformed specimens are presented in figure 10. The
ordinate is log strain ln(R/R0) for the various tests plotted as a function of axial
position z, where z is measured relative to the impact interface. The major and minor
strains, which are both zero at large z, accumulate at different rates as z decreases.
Their maximum values of 87% and 70% are obviously realized at z = 0, respectively.

Recasting the figure 10 strain profiles in terms of the r-value (via equation (4.1))
expressed as a function of minor-side strain gives the very interesting results shown
in figure 11. Noting the footprint r-values from row 3 of table 1, the r-value from the
Taylor specimen profiles actually varies from 1.25 at the impact interface to a peak
value of 2.4 at a strain of 20% (z = 3 mm), indicating rather strong microstructural
evolution as a function of axial position. Note that all three tests depicted in figure 11
are nearly identical from the impact interface down to ca. 15% strain, and then
diverge at smaller strain (perhaps due to geometric measurement uncertainties).
Since r-values are related to yield-surface shape coefficients and shape coefficients
reflect the microstructural state of the material, one may conclude from the results of
figure 11 that some structural change (possibly in texture, grain shape, etc.) occurs
between 15% and 20% strain. At strains greater than 20%, the yield topography
evolves rather monotonically back towards the original shape as strains accumulate
to 72%.
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Figure 11. Tantalum Taylor cylinder r-value profiles shown as a function of minor-side
log strain for three Taylor shots.

(b) Zirconium

Taylor cylinder impact specimens were cut from the zirconium plate described
above for the cylindrical compression specimens, producing two IP cylinder orienta-
tions, i.e. the cylindrical axes are coincident with either the ē1 or ē2 plate directions.
The Taylor specimens were calibre 30 (7.62 mm diameter) cylinders with a length of
2 in (50.8 mm) having an L/D ratio of 6.67.

Taylor tests were conducted at Los Alamos National Laboratory at various veloci-
ties: 50, 101, 170 and 243 m s−1. The 243 m s−1 Taylor shot is portrayed in figure 12
in terms of major- and minor-side profiles and the impact footprint. These cylinders
were launched using a calibre 30 He-gas-driven gun. The velocity of the projectiles
was measured using parallel laser beams crossing the flight path. The anvil target
was AF1410 steel, heat treated to a surface hardness of Rc 58 and lapped to a mirror
finish.

Post-test geometric profile data for the 243 m s−1 specimen were generated using
interface reconstruction software from the National Institute of Health (NIH). The
input data-set for the NIH software consisted of high-resolution electronic scans of
the photographed side profiles for the major and minor dimensions and a footprint.
The reconstructed footprint showed an eccentricity of 1.10. Approximate r-values
extracted from the footprint geometry of figure 12 (using equation (4.1) and the
procedure discussed above for the tantalum tests) are given in row 3 of table 2,
along with the inferred shape coefficients. Row comparison of table 2 indicates large
differences in shape coefficients between the high- and low-rate testing.

Further analysis of the digitized side profiles for the zirconium Taylor shot was
conducted in an analogous fashion to that discussed in § 4 a. Axial strain profiles for
both the major and minor sides of the deformed specimens as inferred from the NIH
results are presented in figure 13. The ordinate is log strain plotted as a function
of axial position z, where z is measured relative to the impact interface. The major

Phil. Trans. R. Soc. Lond. A (1999)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


High-rate material modelling and validation 1725

Figure 12. Photographs of the post-test geometry for a zirconium Taylor specimen.

Figure 13. Zirconium Taylor cylinder strain profiles shown as a function of axial position
relative to the impact interface. Strains for both the major and minor dimensions are shown.

and minor strains, which are both zero at large z, accumulate at different rates as z
decreases; their maximum values of 44% and 31%, respectively, are obviously realized
at z = 0.

Recasting via equation (4.1), the figure 13 strain profiles in terms of r-values
expressed as a function of minor-side strain give the interesting result shown in
figure 14. The footprint r-value of 1.42 (from row 3 of table 2) is seen to decrease to

Phil. Trans. R. Soc. Lond. A (1999)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


1726 P. J. Maudlin and others

Figure 14. Zirconium Taylor cylinder r-value profile shown as a function of minor-side
log strain.

1.3 in figure 14, and it then increases to a plateau value of 1.65 at 15% strain. As strain
goes to zero, the r-value drops precipitously to unity. The evolution of anisotropy
portrayed by figure 14 is quite mild compared to the dramatic quasi-static results of
figure 8.

5. Discussion of results

Review of tables 1 and 2 indicates variability in the values for the Ta and Zr quadratic
shape coefficients, but the important question from an applications point of view is
how significant are these differences. Figure 15 illustrates the table 1 shape coeffi-
cients as π-plane ellipses using equation (2.6). It is obvious from this figure that all of
the methodologies for estimating yield topography that are discussed above, i.e. rate-
independent polycrystal simulations, low strain-rate compression testing (10−3 s−1),
and high-strain-rate Taylor testing (greater than 104 s−1), all predict nearly the same
yield-surface shape. Therefore, for Ta, and possibly for other BCC materials where
two modes of slip deformation represent a good assumption, the use in FE calcula-
tions of a rate-independent yield-surface shape is well justified.

In like manner, figure 16 illustrates the table 2 zirconium quadratic coefficients
as π-plane ellipses. Again note that the low-strain-rate compression testing and
rate-independent polycrystal simulations both produce very similar ellipses in the
π-plane. However, the high-strain-rate Taylor testing predicts yield topography that
is dramatically less anisotropic, demonstrating an interesting rate effect. Obviously,
the rather limited deformation mechanisms (prismatic and pyramidal slip) present
in the lower-symmetry Zr at quasi-static rates must transition somehow at higher
rates. This high-rate behaviour must introduce additional deformation mechanisms
(other competing slip and twinning modes) in such a way that the Taylor loading is
accommodated with much less directional deformation. Initial metallographic exam-
ination of Zr deformed at high rate reveals evidence of substantial twin activation,
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Figure 15. A π-plane subspace comparison of quadratic tantalum yield functions as interpolated
from LApp simulations and experimentally extracted in terms of r-values from the quasi-static
compression tests and Taylor cylinder impact tests.

which is consistent with this postulate. High-rate FE code constitutive modelling
involving a lower-symmetry material like Zr needs to be cognizant of this behaviour.

The effect of evolution on yield-surface shape can be judged for Ta and Zr after
review of both the low-rate and high-rate experimental data-sets. In the proceed-
ing discussion, it is difficult to unfold from the experimental information whether
the evidence of shape coefficient evolution with respect to strain is related to grain
reorientation, grain-shape changes or some transition of the dominant deformation
mechanisms. For Ta, the low-rate results of figure 4 show virtually constant shape
coefficients (ignoring the unload/reload transients) out to the rather modest strain of
12%. It would be interesting to extend the experimental loading for these compression
blocks to larger strain. The high-rate Taylor results of figure 11, which extend to 80%
strain, show moderate shape coefficient evolution: the coefficient α1122 jumps from
1.4 to 2.5, and then decreases slowly back to approximately 1.25 during the course of
the Taylor impact event. This high-rate evolution in yield topography implies con-
current texture and grain-shape evolution, and possibly some slip mode competition.
However, the practical side of the importance of this topography evolution is that
the strain-averaged shape of figure 11 is very close to the initial shape, and, thus, the
importance of evolution for Ta is seen to vanish for the integrated Taylor test. For
Zr, the low-rate figure 8 results show strong yield topography evolution and, thus,
strong implied deformation mechanism transition and texture evolution; the coef-
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Figure 16. A π-plane subspace comparison of quadratic zirconium yield functions as interpolated
from VPSC simulations and experimentally extracted in terms of r-values from the quasi-static
compression tests and Taylor cylinder impact tests.

ficient α1122 evolves from 18 to 8.6 as the compression specimen realizes only 30%
strain. The high-rate analysis of the Zr Taylor test specimen in terms of the figure 14
r-value versus strain results shows much less anisotropy and even less evolution. This
implies that texture and grain-shape evolution, and possible slip mode competition,
have only a minor impact on yield-surface topography at these high rates.

The authors acknowledge the efforts of C. P. Trujillo and T. M. Bell for the design and operation
of the Los Alamos Taylor Anvil test facility, and the efforts of A. J. Honey in the digitization of
the zirconium Taylor cylinder profiles. This work was performed under the auspices of the US
Department of Energy.
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